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The spin-orbit interaction strength gso in helical magnets determines both the pitch wave number q and the
critical field Hc1 where the helix aligns with an external magnetic field. Within a standard Landau-Ginzburg-
Wilson �LGW� theory, a determination of gso in MnSi and FeGe from these two observables yields values that
differ by a factor of 20. This discrepancy is remedied by considering the fermionic theory underlying the LGW
theory and in particular the effects of screening on the effective electron-electron interaction that results from
an exchange of helical fluctuations.
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Chiral itinerant ferromagnets such as MnSi �Refs. 1 and
2� and FeGe �Ref. 3� have recently attracted considerable
attention. Both of these systems crystallize in the cubic B20
structure, which lacks inversion symmetry, and as a result
spin-orbit coupling effects are important for the magnetic
properties. They both exhibit spiral or helimagnetic spin or-
der at low temperatures �below a critical temperature Tc of
about 28.5 K at ambient pressure in MnSi, and about 279 K
in FeGe, respectively�, which is believed to be generated by
a Dzyaloshinsky-Moriya term4,5 in the free energy. The pitch
wavelength of the helix is large compared to a microscopic
length scale; this reflects the weakness of the spin-orbit in-
teraction. The pitch wave vector is q=0.035 Å−1 in MnSi
�Ref. 6� and q�0.009 Å−1 in FeGe.3 In other parts of the
phase diagram in MnSi, striking non-Fermi-liquid behavior
has been observed in low-temperature transport
measurements.7

In an isotropic electron system there would be no pre-
ferred direction for the pitch vector of the helix. In real ma-
terials, the underlying crystal lattice pins the helix. The terms
in the free energy that cause this pinning are of higher order
in the spin-orbit interaction and hence represent an energy
scale that is even weaker than those that lead to the forma-
tion of the helix. In MnSi, the pinning is in the �1,1,1� direc-
tion �or equivalent�; in FeGe, it is in the �1,0,0� direction �or
equivalent� close to the transition, and in the �1,1,1� direction
at lower temperatures. An external magnetic field makes it
energetically favorable for the helix to align with the field,
and this competes with the crystal-field effects. As a result,
upon applying a magnetic field in, say, the �0,0,1� direction
to MnSi in the helical phase, the pitch vector rotates away
from �1,1,1� until it aligns with the field direction at a critical
field strength H=Hc1. This field strength marks the boundary
of the so-called conical phase, which is characterized by a
homogeneous magnetization superimposed on the helix that
is aligned with the field. Upon further increasing the field,
the homogenous component of the magnetization increases,
and the amplitude of the helix continuously decreases until it
disappears at a second critical field, Hc2, where the system
enters a field-polarized phase with a homogeneous magneti-
zation.

The above considerations make it clear that one can ob-

tain a measure of the spin-orbit interaction strength from
measuring either the pitch wave number or the critical field
Hc1. It is a puzzling, but overlooked, fact that interpreting the
results within the existing theoretical framework yields val-
ues for the spin-orbit interaction strength that differ by a
factor of about 25. It is the purpose of the present Rapid
Communication to resolve this discrepancy.

In order to frame our discussion of these various effects,
let us consider the Landau-Ginzburg-Wilson �LGW� theory
that has been commonly used to describe helical magnets.8 If
the phase transition is either continuous or weakly first order,
then the classical behavior of the system close to the transi-
tion can be described by an action

S = S0 + Sc + Scf + SH. �1a�

Here S0 is the usual action for a classical Heisenberg
ferromagnet,9

S0 =� dx� r0

2
M2�x� +

a

2
��M�x��2 +

u

4
M4�x�� . �1b�

Here M�x� is the three-component order parameter whose
expectation value is proportional to the magnetization, r0 is
the bare distance from the critical point, and a and u are
parameters that depend on the microscopic details of the sys-
tem. ��M�2 is a shorthand notation for 	i,j�iMj�

iMj. S0 is
invariant under separate rotations in order-parameter space
and real space.

Sc is the leading chiral term induced by the spin-orbit
interaction,4,5

Sc =
c

2
� dxM�x� · �� � M�x�� . �1c�

The coupling constant c is proportional to the dimensionless
spin-orbit interaction strength gso, and on dimensional
grounds we have c=akFgso. Note that Sc is still invariant
under joint rotations in order-parameter space and real space
but not under spatial inversions. This term can therefore be
present only in systems that are not inversion invariant. The
chiral nature of the curl produces the helical ground state,
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and the handedness of the helix depends on the sign of c. We
assume c�0 without loss of generality.

Scf is the largest term that describes the crystal-field ef-
fects that couple the magnetization to the underlying lattice.
For a cubic lattice, a representative contribution to Scf reads8

Scf = b� dx	
i

 �Mi

�xi
�2

. �1d�

The coupling constant b is quadratic in gso and given by b
=a�gso

2 with �a���a. �Here and it what follows we ignore
factors of O�1�.� Scf breaks the rotational invariance and is
responsible for pinning the helix. The direction of the pin-
ning depends on the sign of b.

Finally, we have a term that couples an external magnetic
field H to the magnetization:

SH =� dxH�x� · M�x� . �1e�

In the absence of both an external field and any coupling
to the underlying lattice, it is easy to see that Eqs. �1b� and
�1c� lead to a helical ground state:

M�x� = m1�ê1 cos�q · x� + ê2 sin�q · x�� . �2�

Here the unit vectors ê1, ê2, and q̂=q / �q� form a right-handed
dreibein. The amplitude of the helix is given by m1=−r /u,
with r=r0−aq2. The pitch vector q points in an arbitrary but
fixed direction, and in a mean-field approximation its modu-
lus is given by q=c /2a+O�gso

2 �. q is small compared to the
Fermi wave number kF by virtue of gso�1. In MnSi, kF
�3.6 Å−1,10 so q /kF�0.01. Assuming the same value for kF
in FeGe, we have q /kF�0.0025. The value of gso, which is
equal to q /kF within a factor of two,11 is thus

gso � �0.01 �MnSi�
0.0025 �FeGe� .

� �3�

As discussed above, a magnetic field tends to align the
helix away from the pinning direction that is ultimately de-
termined by the spin-orbit interaction, and hence the magni-
tude of the field necessary to depin the helix provides an-
other estimate for gso. In MnSi, the best studied helimagnet,
the helix in zero field is pinned in the �1,1,1� direction, which
implies that the coefficient b in Eq. �1d� is negative �b�0
leads to pinning in the �1,0,0 direction�.8 At ambient pressure
and not too close to the transition temperature, the experi-
mental value for the field Hc1 defined above, where the pitch
vector q aligns with the field direction, is Hc1�0.1 T.12 In
the same region, the experimental value for the field Hc2,
where the helix vanishes, varies between 0.4 and 0.55 T.
Together with the corresponding experimental results for
FeGe,3 we thus have a ratio

�exp � Hc1/Hc2 � �0.2 �MnSi�
0.1 �FeGe� .

� �4�

Comparing these experimental results with theoretical es-
timates leads to a puzzle. Equations �1� can be analyzed in
detail to yield the critical fields Hc1 and Hc2,13,14 but for our
present purposes the following simple considerations suffice.

Hc1 is roughly determined by the magnetic energy, given by
SH, being equal to the pinning energy, which is given by Scf.
Hc2 is roughly determined by the magnetic energy being
equal to the chiral energy, which is given by Sc. For a homo-
geneous magnetic field, the coupling in SH is to the homoge-
neous magnetization, m0��dxM�x�=�H, with � as the ho-
mogeneous magnetic susceptibility. The magnetic energy is
thus of O�H2�, SH=�H2. In Eq. �1d�, the gradient squared is
on the order of q2, and the magnetization is on the order of
the amplitude of the helix, m1. For Hc1 we thus obtain the
estimate

Hc1 � m1qb/� � gsom1qa/� . �5a�

Applying an analogous estimate to Eq. �1c�, we obtain

Hc2 � m1
cq/� = m1

akFgsoq/� . �5b�

All quantities whose estimates might be questionable thus
drop out of the ratio �. In particular, � is independent of the
LGW coefficient a, which is given by a length scale whose
nature depends on the degree of sophistication that is built
into the LGW theory. We thus have a theoretical result from
the bare LGW theory15

�theo
bare � gsoq/kF � gso. �6�

Comparing Eqs. �3�, �4�, and �6�, we see that the experimen-
tal values for � are larger than the theoretical expectation by
about a factor of 20 in MnSi and 40 in FeGe. We will now
show how this discrepancy can be resolved by considering
the screening of the effective electron-electron interaction
that results from the exchange of helical fluctuations.

We first need to discuss the nature of the dominant fluc-
tuations in a helical magnet. The helical ground state repre-
sents a spontaneous breaking of translational invariance and
therefore leads to a Goldstone mode or helimagnon. For the
LGW action written above and as a function of the wave
vector k for �k��q, the frequency of the helimagnon
reads16,17

�0�k� = ak�
2 + 2�b�k�

2 /3 + ak�
4 /2q2. �7�

Here k= �k� ,k�� has been decomposed into components par-
allel and perpendicular to the pitch wave vector q. We have
assumed b�0, as appropriate for MnSi,8 and we have ne-
glected corrections of O�b�=O�gso

2 � to the coefficients of k�
2

and k�
4 . For b=0, that is, if we neglect all effects of O�gso

2 �,
the helimagnon frequency squared lacks a contribution pro-
portional to k�

2 . This is a result of rotational invariance. The
crystal-field term Scf in the action breaks this invariance,
which leads to a mode that is still soft �because the transla-
tional invariance is still broken�, but has a k�

2 term with a
small prefactor. It is the generalization of the well-known
magnons in ferromagnets and antiferromagnets that have a
quadratic and linear dispersion relation, respectively.

The spin model described by Eqs. �1� can be understood
and derived as an effective theory that results from an under-
lying fermionic action. The technical procedure is to single
out the magnetization by either performing a Hubbard-
Stratonovich decoupling of the spin-triplet interaction or by
constraining the appropriate combination of fermion fields to
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an auxiliary composite field whose expectation value is the
magnetization.18,19 Integrating out the fermions then yields
the spin model, with the coefficients of the LGW theory
given in terms of localized fermionic correlation functions.
Conversely, integrating out the magnetization yields an ef-
fective theory of electronic quasiparticles that interact via an
exchange of helimagnons. This effective interaction was de-
rived and discussed in Ref. 20. For small wave numbers, the
leading contribution to the effective potential is

V�k,i	;p1,p2� = V0��k,i	�
�k,p1�
�− k,p2� . �8a�

Here V0=�2q2 /8�me
��2 with � as the Stoner gap �i.e., the

splitting of the two electron bands that results from the mag-
netization in a mean-field approximation� and me

� the electron
effective mass. 	 denotes a bosonic Matsubara frequency,
and the helimagnon susceptibility is

��k,i	� =
1

2NF

q2

3kF
2

1

�0
2�k� − �i	�2 , �8b�

with NF as the density of states at the Fermi surface. The
leading contribution to the vertex function 
 is given by


�k,p� = ��k� · p��p�/� . �8c�

The dimensionless parameter � describes the coupling of the
electrons to the lattice; generically, �=O�1�.20 The effective
potential is graphically depicted in Fig. 1.

Due to the singular nature of the helimagnon susceptibil-
ity the effective interaction is long ranged, and screening has
a qualitative effect. The leading effect of screening is cap-
tured by the usual random-phase approximation �RPA�.21

The screened interaction is shown in Fig. 2. If one takes the
resulting fermionic theory of quasiparticles interacting via
the screened effective interaction, reintroduces the magneti-
zation, and integrates out the fermions, one can study the
effect of the screening on the LGW spin model.22 For our
present purposes, the most important effect is a renormaliza-
tion of the coupling constant in the crystal-field term Scf �Eq.
�1d��. We find

b → b − �b��2�F/��2. �9�

The value of � MnSi is not well known, but it is clear from
the small value of Tc that F /� is large compared to unity. An

band structure calculation23 yielded ��3000 K, while the
Fermi temperature is TF�150 000 K,10,24 for a ratio F /�
�50. The effect of the screening is thus large, and the sign of
the effect is important. If b�0, then the bare theory yields a
helix pinned in the �1,1,1� direction and the renormalization
greatly enhances the coefficient and the pinning strength. If
b�0, then the bare theory predicts pinning in the �1,0,0�
direction and the renormalization changes this to the �1,1,1�
direction. This is analogous to the effect of a strong electron-
phonon coupling that can trigger a structural phase transition.
The pinning will thus always be in the �1,1,1� direction for
systems where the transition is continuous or weakly first
order. For strongly first-order transitions the LGW theory is
no longer controlled, and a gradient-free cubic anisotropy in
the action �i.e., a term proportional to 	iMi

4, which we have
neglected in Eqs. �1�� can invalidate this conclusion. These
observations are consistent with experimental results. In
MnSi, the transition is continuous or very weakly first order,
and the pinning is in �1,1,1� direction everywhere in the or-
dered phase.2 In FeGe, the transition is strongly first order,
and the pinning is in �1,0,0� direction close to Tc but switches
to the �1,1,1� direction at lower temperatures.3

According to Eqs. �4�, Hc1 is proportional to b while Hc2
is independent of b. The renormalized theory thus yields the
following result for the ratio �=Hc1 /Hc2:

�theo � gso�F/� , �10�

which replaces Eq. �6�. With the numbers quoted above and
assuming ��1, we obtain values for MnSi and FeGe that are
in agreement with the experimental ones given in Eq. �3�
within a factor of two.

As a check, we discuss the absolute values of Hc1 and
Hc2. Taking into account Eq. �9�, Hc1 is given by

Hc1 � gsom1q��F/��a/� . �11�

In the ordered phase of MnSi at ambient pressure, the sus-
ceptibility is observed to be ��6�B

2 /kBTc,
2 consistent with

theoretical considerations.25 In a fully renormalized spin
model, the gradient-squared term in the action taken at the
Fermi length scale must obey akF

2m1
2 /2�Tc. With these esti-

mates, we obtain from Eq. �11� Hc1�0.25 T, which is the
correct order of magnitude. Similarly, from Eq. �5b�, Hc2
�0.5 T, in agreement with the experimental value. Note
that without the screening that affects the value of b and is
necessary to produce a “fully renormalized spin model,” the
corresponding values would be at odds with the experimental
ones even though the LGW coefficient a has been linked to
the energy or length scale related to Tc rather than to the
microscopic scale given by TF. See also Ref. 15.

In summary, we have pointed out that the standard LGW
theory for helical magnets leads to a large discrepancy be-
tween the strength of the spin-orbit interaction in helical
magnets as determined from the pitch wave number versus

, iωp
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, iωp
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1 1

1 Ωi+ 2 −2
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γ γ

FIG. 1. The effective quasiparticle interaction due to helimag-
nons. Note that the vertices depend on the quasiparticle momenta in
addition to the helimagnon momentum.
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FIG. 2. Screening of the ef-
fective quasiparticle interaction.
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the ratio Hc1 /Hc2 of the two critical fields. We have shown
that a renormalization of the theory that results from the
screening of the effective quasiparticle interaction resolves
this puzzle and also leads to absolute values of the critical
fields that are in good agreement with the experimentally
observed values.
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